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Abstract— There is experimental evidence that a recently
proposed subspace algorithm based on predictor identification
has a behavior which is very close to prediction error methods
in certain simple examples; this observation raises a question
concerning its optimality.

It is known that time series identification using the Canonical
Correlation Analysis (CCA) approach is asymptotically effi-
cient. Asymptotic optimality of CCA has also been proved when
measured inputs are white. In this paper we study the relation
between the standard CCA approach and the recently proposed
subspace procedure based on predictor identification (PBSID1

from now on).
In this paper we work under the assumption that there is no

feedback; it is shown that CCA and PBSID are asymptotically
equivalent precisely in the situations when CCA is optimal.
The equivalence holds only asymptotically in the number of
data and in the limit as the past horizon goes to infinity.

Using some recent results on the asymptotic variance we
report counter-examples showing that PBSID is not efficiency
in general when measured inputs are not white.

I. I NTRODUCTION

A certain number of subspace algorithms have been devel-
oped during the last two decades. For time series identifica-
tion the algorithm developed by Van Overschee and De Moor
[27] is known to provide asymptotically2 efficient estimators
[2]. Sometimes this algorithm goes under the name of CCA
(or CVA) to remind that the state construction is performed
using Canonical Correlation Analysis. In the presence of
measured inputs the situation is different. The most widely
known procedures go under the acronyms N4SID [28], CCA
[23], [24] and MOESP [30]. Recently several researchers
have studied the asymptotic statistical properties of these
algorithms [1], [21], [4], [5], [3], [9], [11] and compared,
to some extent, existing procedures [5], [3], [10]. Also
optimality of the CCA method when measured inputs are
white has been established in [5]. The situation is not clear
when inputs are not white. The interested reader is referred
to the paper [5].

It is our opinion, as has already been stressed in [14], that
some new ideas have been introduced into the field by the
study of subspace algorithms in the presence of feedback.

It is well-known in fact that standard procedures such as
MOESP, N4SID, CCA, do not work when data are collected
in closed loop. Very recently two subspace procedures have
been introduced by Qin and Ljung [26], and Jansson [22]
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1Short for “predictor-based subspace identification”.
2Both in the number of data and “past” and “future” horizons.

which, to some extent, are able to deal with feedback. The
recent work [13] studies the statistical consistency of these
two algorithms. In [13] also a “geometrical” version of the
algorithm proposed by Jansson [22] was introduced and
called “whitening-filter” algorithm. This procedure forms the
basis of our analysis and will be referred to as the “predictor-
based subspace identification” (“PBSID” for short) algorithm
in this paper. We refer the reader to the paper [14] for an
explanation of this terminology.

Experimental evidence shows that the behavior of this
algorithm cannot be distinguished to any practical purpose
from PEM in a number of simple examples, see the simu-
lations reported in [22], [13]. Using some recently derived
formulas (see [6], [7]) for the asymptotic variance of PBSID
one can verify that it is efficient in a number of examples
when measured inputs are white. This observation raises
the question:is PBSID optimal and, if so, under which
conditions?

We believe therefore that the relation of this procedure
with classical approaches is worth studying. To the best of
our knowledge this relation has not been investigated yet.

In this paper we work under the assumption thatno
feedback is present. The main contribution is to show that
PBSID is asymptotically equivalent to CCA in the time
series case and also when measured inputs are white. The
reason why equivalence does not hold with arbitrary input
signals will be made clear later on. Suffices it to say that
standard procedures use “unnecessary” future input data in
the regression used to construct the basis for the state space;
in the white input case these “unnecessary input data” are
(asymptotically) uncorrelated with past input and output and
present output and therefore do not influence the statistical
properties.

This is, we believe, an important step in understanding
“predictor based” subspace identification; our result implies
that also the PBSID algorithm is asymptotically optimal for
time series identification and for identification with white
exogenous inputs. We stress that our proof is not based on
the asymptotic variance expressions but rather on the analysis
of the state estimation step on which PBSID and CCA are
based.

The question regarding optimality in more general cases
remains open of course; simulation results and computations
based on the asymptotic variance expressions (see Section
V) suggest that PBSID is in general not efficient for colored
input. This with a notable exception: we have observed in a
number of examples with ARX systems that the asymptotic
variance is indistinguishable from the Cramér Rao lower



bound also for colored inputs and also when feedback is
present.3 Whether or not this depends on the particular
example or can be generalized will be subject of future
research.

The structure of the paper is as follows; in Section II
we introduce some basic notation. The details of the two
algorithms analyzed are reported in section III while Section
IV contains the statement of the main result. Section V
contains some simulation results and in Section VI we report
some conclusions and discussion on future work. Part of the
proof is deferred to the appendix.

II. BASIC NOTATION AND PRELIMINARIES

Let {y(t)}, {u(t)} be jointly (weakly) stationary second-
order ergodic stochastic processes of dimensionp and m
respectively, which are representable as the output and input
signals of a linear stochastic system in innovation form

{
x(t + 1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t) t ≥ t0.

(II.1)
we assume that there isno feedbackfrom {y(t)} to {u(t)}
[18], [16]. Without loss of generality we shall assume that the
dimensionn of the state vectorx(t) is as small as possible,
i.e. the representation (II.1) is minimal. For simplicity we
assume thatD = 0, i.e. there is no direct feedthrough4 from
u to y. For future reference we definēA := A −KC and
let ρ := λmax(Ā) be an eigenvalue of maximum modulus of
Ā; we shall assume that|ρ| is strictly less than1.

The white noise processe, the innovation ofy given the
joint past ofy,u, is defined as the one step ahead prediction
error of y(t) given the joint (strict) past ofu and y up to
time t.

The symbolI shall denote the identity matrix (of suitable
dimension),A> shall denote the transpose of the matrix
A. The equality sign= will have to be understood, when
random variables are involved, asalmost sureequality while
·= shall denote equality in probability up too(1/

√
N) terms,

which we shall callasymptotic equivalence. In fact, from
standard results in asymptotic analysis (see for instance [15])
terms which areo(1/

√
N) can be neglected when studying

the asymptotic statistical properties. We shall also use the
same symbol when the difference in the equated terms
produces nonsingular change of basisT̂N (up to o(1/

√
N)

and satisfyinglimN→∞ T̂N = I) in the estimated state
sequences. In fact also these differences may be discarded
as far as estimation of system invariants are concerned. For
instance, ifx1 and x2 are two candidate state variables,
we shall writex1

·=x2 if there exists a non singular̂TN ,
with limN→∞ T̂N = I, so thatx1 − T̂Nx2 = o(1/

√
N) in

probability.
Our aim is to identify the system parameters(A,B, C, K),

or equivalently the transfer functionsF (z) = C(zI−A)−1B

3We remind that something similardoes nothappen with CCA.
4This assumption can be removed in our situation but is useful when there

is feedback, see [18], [16], [13]. Since the “predictor based” algorithm is
designed to work without assumptions on the feedback structure we prefer
to keepD = 0 also here.

andG(z) = C(sI −A)−1K + I, starting from input-output
data{ys, us}, s ∈ [t0, T +N ], generated by the system (II.1).
This setup also encompasses time series identification (i.e.
no measured inputs) provided one letsB = 0 in (II.1).

In this paper we shall have to deal with random fluc-
tuations due to finite sample length (e.g. approximating
expectations with finite time averages, etc.). Our concern is to
show the link between CCA and “predictor based” algorithm
asymptotically as the number of dataN goes to infinity.

We shall use the standard notation of boldface (lowercase)
letters to denote random variables (or semi-infinite tails).
Lowercase letters denote sample values of a certain random
variable. For example we shall denote withy(t) the random
vector denoting the output or equivalently the semi-infinite
tail [yt yt+1, . . . yt+k . . . ] whereyt is the sample value of
y(t). It can be shown (see [25], [12]) that the Hilbert spaces
of second order stationary random variables and the Hilbert
space of semi-infinite tails containing sample values of a
(second order) stationary stochastic process are isometrically
isomorphic and therefore random variables and semi-infinite
tails can be regarded as being the same object. For this reason
we shall use the same symbol without risk of confusion.

We shall instead use capitals to denote the tail of length
N . For instanceYt := [yt yt+1, . . . yt+N−1], Ut :=
[yt yt+1, . . . yt+N−1] andZt := [Y >

t U>
t ]>. These are the

block rows of the usualdata Hankel matriceswhich appear
in subspace identification.

Remind that, in order to deal with realistic algorithms
which can only regress on a finite amount of data, in
subspace identification one usually keepsfinite past and
future horizons. This setting we describe as using data from
a finite observation interval. The analysis reported in this
paper requires that bothN , the length of the finite tails5 and
the past horizont− t0

6 go to infinity. We remind the reader
that t− t0 has to go to infinity at a certain rate depending on
the numberN of data available. Details can be found, for
instance, in [5] where the following assumption is made:

Assumption 2.1:The past horizont − t0 goes to infinity
with N while satisfying:

t− t0 ≥ logN−d/2

log|ρ| 1 < d < ∞
t− t0 = o (log(N)α) α < ∞ (II.2)

Under this assumption the effect of terms due to mishan-
dling of the initial condition at timet0 are o(1/

√
N) and

therefore can be neglected. Moreover, (II.2) ensures that,
when regressing onto past data and taking the limit asN goes
to infinity, the computation of sample covariance matrices of
increasing size (witht− t0) does not pose any complication
in the sense that their limit is well defined and equal to the
population counterpart (see the discussion after Lemma 4 in
[5]).

5This is the parameterj in the notation of Van Overschee and De Moor
[28] i.e. the number of columns in the Hankel data matrices used in subspace
identification.

6The number of block rows in the Hankel data matrix containing the past
data.



For t0 ≤ t ≤ T we define the Hilbert spaceU[t0, t) of
random (zero mean finite variance) variables

U[t0, t) := span {uk(s); k = 1, . . . , p, t0 ≤ s < t }
the bar denotes closure in mean square, i.e. in the metric
defined by the inner product〈 ξ, η 〉 := E{ξη} whereE{·}
denote mathematical expectation. Similarly we defineY[t0, t).
These are thepast spacesat time t of the processesu and
y. Similarly, letU[t, T ], Y[t, T ] be the future input and output
spaces up to timeT . We shall useν := T − t.

We define thejoint future, Z[t, T ] := U[t, T ] ∨ Y[t, T ] and
joint pastZ[t0, t) := U[t0, t) ∨ Y[t0, t) the ∨ denoting closed
vector sum. By convention the past spaces do not include the
present. Whent0 = −∞ we shall use the shorthandsU−t , Y−t
for U[−∞, t), Y[−∞, t), and Z−t := U−t ∨ Y−t . Subspaces
spanned by random vectors at just one time instant (e.g.
U[t, t ], etc) are simply denotedUt, etc. while for the spaces
generated byu and y when t goes from−∞ to +∞ we
shall use the symbolsU, Y, respectively.

With a slight abuse of notation, given a subspaceA ⊆
U∨Y, we shall denote withE[· | A] the orthogonal projection
onto A, which coincides with conditional expectation in the
Gaussian case. Given two non-intersecting subspacesA ⊆
U ∨ Y, B ⊆ U ∨ Y, A ∩ B = {0}, E‖B[· | A] shall denote
the oblique projection ontoA alongB (see [17], [12]).

We adopt the notationΣab := E
[
ab>

]
to denote the

covariance matrix between the zero mean random vectors
a and b. In the finite dimensional case the orthogonal
projection of the random vectora onto the space spanned by
the vectorC := span{c} will be given by the usual formula
(with Σcc)

E[a|C] = ΣacΣ−1
cc c.

Defining the projection errors̃a := a − E[a|c] and b̃ :=
b − E[b|c], the symbolΣab|c will denote projection error
covariance (conditional covariance in the Gaussian case)
Σab|c := Σãb̃ = Σab − ΣacΣ−1

cc Σcb. If we denoteB :=
span{b}, C := span{c}, and assume thatB ∩ C = {0},
the oblique projectionE‖B [a|C] can be computed using the
formula:

E‖B [a|C] = Σac|bΣ−1
cc|bc. (II.3)

For column vectors formed by stacking past and/or
future random variables (or semi-infinite Hankel matri-
ces) we shall use the following notation:y[t,s] :=[

y>(t) y>(t + 1) . . . y>(s)
]>

. We shall also use
the shorthandu+ := u[t,T ].

Similarly the (finite) Hankel data matrices will be denoted
asY[t,s] :=

[
Y >

t Y >
t+1 . . . Y >

s

]>
Sample covariances of finite sequences will be denoted

with the same symbol used for the corresponding ran-
dom variables with a “hat” on top. For example, given
finite sequencesAt := [at, at+1.., at+N−1] and Bt :=
[bt, bt+1.., bt+N−1] we shall define

Σ̂ab =
1
N

N−1∑

i=0

at+ib
>
t+i.

Under our ergodic assumptionlim
N→∞

Σ̂ab
a.s= Σab.

Similarly, given a third sequence (sayCt :=
[ct, ct+1, .., ctN−1]), Σ̂ab|c is defined as Σ̂ab|c :=
Σ̂ab − Σ̂acΣ̂−1

cc Σ̂cb. Orthogonal and oblique projections on
spaces of finite tails will be denoted with the symbolÊ;
e.g. Ê[·|U[t0,t)] will be the orthogonal projection on the
space generated by the rows ofU[t0,t) and Ê‖U[t,T ]

[·|Z[t0,t)]
will be the oblique projection along the space generated by
the rows of future inputsU[t,T ] onto the space generated by
the rows of the joint pastZ[t0,t) [17]. As above, the oblique
projection can be computed using the formula:

Ê‖Bt
[At|Ct] = Σ̂ac|bΣ̂−1

cc|bCt. (II.4)

When projecting onto the space generated by the rows of
two (or more) matrices, sayBt and Ct we shall use the
notationÊ [·|Bt, Ct]

All through this paper we shall assume that the joint
process is “sufficiently rich”, in the sense thatZ[t0, T ] admits
the direct sum decomposition

Z[t0, T ] = Z[t0, t) + Z[t, T ], t0 ≤ t < T (II.5)

the+ sign denoting direct sum of subspaces. The symbol⊕
will be reserved fororthogonaldirect sum. Various condi-
tions ensuring sufficient richness are known. For example, it
is well-known that for a full-rank purely non deterministic
(p.n.d.) processz to be sufficiently rich it is necessary and
sufficient that the determinant of the spectral density matrix
Φz should have no zeros on the unit circle [20].

Whenever necessary we shall assume that (II.5) holds also
for finite sequences, i.e. thatZ[t0,T ] is of full row rank.

For future reference we also define the extended observ-
ability matrices

Γk :=




C
CA
CA2

...
CAk−1




, Γ̄k :=




C
CĀ
CĀ2

...
CĀk−1




(II.6)

and the Toeplitz matrices containing the Markov parameters
of the “stochastic” part:

Hk =




I 0 . . . 0
CK I . . . 0

...
...

. . .
...

CAk−2K CAk−3K . . . I


 . (II.7)

III. STATE SPACE CONSTRUCTION

It is well known [27], [28], [25], [12] that identification
using subspace methods can be seen as a two step procedure
as follows:

1) Construct a basiŝXt for the state space via suitable
projection operations on data sequences (Hankel data
matrices)

2) Given (coherent) bases for the state space at timet
(X̂t) and t + 1 (X̂t+1) solve

{
X̂t+1 ' AX̂t + BÛt + KEt

Yt ' CX̂t + Et
(III.1)



in the least squares sense

Different subspace algorithms have different implementa-
tions of the first step while the second remains the same
for virtually al algorithms7. For this reason we compare
algorithms on the basis of step 1). We shall identify proce-
dures which are (asymptotically) equivalent, modulo change
of basis, as the first step is concerned.

Remark III.1 We remind the reader that fort0 finite the
estimation of the Kalman gainK involves the solution of
a Riccati Equation. See for instance [27], [28], [25]. The
situation is different here sincet0 is let going to −∞
according to Assumption 2.1 ♦

In this Section we shall review the state construction step
for the CCA algorithm [23], [29], [5] and for the PBSID
algorithm [22], [13].

A. CCA Algorithm

The basic object which allows to construct a basis for the
state space is the “oblique predictor”

Ŷ[t,T ] = Ê‖U[t,T ]

[
Y[t,T ] | Z[t0,t)

]
' ΓνXt.

(III.2)

The approximate equality has to be understood in the sense
that, asymptotically inN

ŷ[t,T ] = E‖U[t,T ]

[
y[t,T ] | Z−t

]
= Γνx(t) (III.3)

holds. The matrixŶ[t,T ] has in general full row rank.
The reduction to rankn, the system order, is implemented

via the weighted singular value decomposition

W−1Ŷ[t,T ] = USV >

= [UnŨn]
[

Sn 0
0 S̃n

] [
V >

n Ṽ >
n

]

(III.4)
The CCA algorithm corresponds to the choice8 W :=
Σ1/2

y+y+|u+ . An estimate of the observability matrix is ob-
tained discarding the “less significant” singular values (i.e.
pretendingS̃n ' 0) from

Γ̂ν = WUnS1/2
n

and consequently a basis for the state space given by:

X̂CCA
t := S−1/2

n U>
n W−1Ŷ[t,T ] (III.5)

Remark III.2 We remind that all weighting matrices are in
practice data dependent. However, for the purpose of asymp-
totic analysis, data dependent weights can be substituted with
their (a.s.) limit. Therefore, to streamline notation, we prefer
to work directly with the population version of all weights.
♦

7In this paper we shall not be concerned with algorithms based on the
so-called “shift invariance” method.

8The reader may argue that this procedure differs from the original CCA
by the choice of a “right” weight. We remind that this “right weight” has
no influence on the asymptotic accuracy of the estimates using the so called
“state approach”, i.e. implementing step 2) above. See for instance [5], [9].

We quote now a result first appeared in [5] which shows
that the CCA weightW = Σ1/2

y+y+|u+ can be substituted

with [Hν(I ⊗ Λ)H>
ν ]1/2 without changing the asymptotic

properties:
Lemma 3.1:(Bauer Ljung[5]) Assume the parameters are

estimated following steps 1) and 2) above and the state
is constructed according to (III.5). Then any choiceW =
[Hν(I ⊗ Λ)H>

ν + ΓνΣΓ>ν ]1/2 with Σ = Σ> ≥ 0, provides
the same asymptotic accuracy of the estimates of any system
invariant.

This fact will be useful later on to study the relation
between CCA and predictor-based subspace identification.
Remark III.3 With some abuse of notation we shall denote
with X̂CCA

t any state sequence resulting from a choice ofW
of the formW = [Hν(I⊗Λ)H>

ν +ΓνΣΓ>ν ]1/2. Lemma 3.1
ensures that these state sequences are asymptotically equiv-
alent as far as estimation of system invariants is concerned,
but may differ for a nonsingular change of basis of course.
♦

B. PBSID algorithm

The construction of the state space using this algorithm
is slightly more complicated and involves several oblique
projections. First of all one computes the oblique projections9

Ŷ p
t+h := Ê‖Z[t,t+h)

[
Yt+h | Z[t0,t)

]
' CĀh−1Xt

h = 0, 1, .., ν.

(III.6)

Also here the last approximate equality has to be understood
in the sense that, asymptotically inN ,

ŷp(t + h) := E‖Z[t,t+h)

[
y(t + h) | Z−t

]
= CĀh−1x(t)

h = 0, 1, .., ν
(III.7)

holds. Then one stacks all the predictors

Ŷ p
[t,T ] :=




Ŷ p
t

Ŷ p
t+1
...

Ŷ p
T


 ' Γ̄νXt.

From the Singular Value Decomposition

W−1
p Ŷ p

[t,T ] = PDQ> = [PnP̃n]

[
Dn 0

0 D̃n

] [
Q>n Q̃>n

]

(III.8)
where Wp is a weighting matrix which will be chosen

appropriately, an estimate of the observability matrixΓ̄ν is
obtained discarding the “less significant” singular values (i.e.
pretendingD̃n ' 0) from

ˆ̄Γν = WpPnD1/2
n

and consequently a basis for the state space

X̂PBSID
t := D−1/2

n P>n W−1
p Ŷ p

[t,T ] (III.9)

9The superscriptp reminds that the quantity has to do with the “predictor-
based” algorithm.



IV. M AIN RESULT

Our purpose in this section is to study the link between
the state constructions (III.5) and (III.9). We first state the
main result of the paper and then proceed with a derivation
of the result.

Theorem 4.1:Let Λ denote the innovation noise covari-
ance. Under the conditions stated in Assumption 2.1, assum-
ing that inputs are white or absent and providedWp is chosen
according toWp = I⊗Λ1/2, the state constructions in (III.5)
and (III.9) yield asymptotically the same accuracy as far as
estimation of any system invariant is concerned i.e.:

X̂PBSID
t

·=X̂CCA
t

Remark IV.4 Using state sequences which cannot be dis-
tinguished up too(1/

√
N) terms guarantees that the es-

timated system matrices obtained from step 2) above and
consequently any system invariant share the same asymptotic
properties. ♦

The proof of this theorem relies on an intermediate result
which we state in the form of a lemma:

Lemma 4.2:If u(t) is absent or white the oblique predic-
tor Ŷt+h := Ê‖U[t,T ]

[
Yt+h | Z[t0,t)

]
satisfies:

Ŷt+h
·=Ŷ p

t+h +
h∑

i=1

CĀi−1KŶt+h−i (IV.1)

which can be written in compact form as

Ŷ p
[t,T ]

·=




I 0 . . . 0
−CK I . . . 0

...
...

. . .
...

−CĀν−2K −CĀν−3K . . . I


 Ŷ[t,T ]

(IV.2)
The block Toeplitz matrix which appears in formula (IV.2)
is the inverse ofHν defined above, i.e.

Ŷ p
[t,T ]

·=H−1
ν Ŷ[t,T ]. (IV.3)

This lemma shows that̂Y p
[t,T ] is asymptotically equivalent to

a weighted version of̂Y[t,T ]

Proof: The proof can be found in the Appendix
Proof of Theorem 4.1.

We recall from (III.8) that in the predictor-based algorithm
one takes SVD ofW−1

p Ŷ p
[t,T ] while, from (III.4), W−1Ŷ[t,T ]

is used in the CCA algorithm.
Note that, the CCA algorithm corresponds to the choice

W = Σ1/2
y+y+|u+ = (ΓνΣxx|u+Γ>ν + Hν(I ⊗ Λ)H>

ν )1/2

whereΛ is the variance of the innovation.
However, by lettingΣ = 0 in Lemma 3.1,W = (Hν(I ⊗

Λ)H>
ν )1/2 provides the same asymptotic behavior.

If we now pre-multiply both sides of (IV.3) in Lemma 4.2
by W

−1/2
p = (I ⊗ Λ)−1/2 we obtain that

W−1/2
p Ŷ p

[t,T ]

·=(I ⊗ Λ)−1/2H−1
ν Ŷ[t,T ]. (IV.4)

As described in Section III the right hand side is used in
CCA while the left hand side in PBSID. This means that

the matrices of which one computes SVD are asymptotically
equivalent for the two algorithms. As a consequence also
the estimated state sequencesX̂CCA(t) andX̂PBSID(t) are
asymptotically equivalent, which concludes the proof.

¤

V. SIMULATION RESULTS

The simulation setup is as follows: we consider two
systems to be identified (in innovation form); the first is a
first order ARX system

A1 = 0.5 C1 = 1 B1 = 1 C1 = 1 K1 = 0.5 D1 = 0

while the second is a first order ARMAX model

A2 = 0.5 C2 = 1 B2 = 1 C2 = 1 K2 = 1 D2 = 0

The input is either unit variance white noise or unit
variance white noise passed through the filter with state space
realization:

Au =
[

0 1
−0.9 0.5

]
Bu =

[
1.3
.3

]

Cu =
[

1 0
]

Du = 1

We report results concerning the asymptotic variance
(sample variance estimated over500 Monte Carlo runs
multiplied by the numberN = 1000 of data point used
in each experiment) of the deterministic transfer functions
Fi(z) = Ci(zI − Ai)−1Bi, i = 1, 2. The past horizon has
been chosen to be5 and10 respectively for Example 1 and
Example 2. As a reviewer mentioned, this might be a critical
point. Let us just mention that the length of the past horizon
for the equivalence to hold in practice depends onρ. The
closerρ to 1, the largert − t0 needs to be. Investigations
concerning such choice are postponed to future publications
for reasons of space.

Future horizon has been chosen equal to5 in both exam-
ples.

Note that for the white input case both CCA and the
predictor based algorithm are indistinguishable from PEM
as predicted by the theory. The algorithm by Jansson [22] is
indistinguishable from PBSID. The asymptotic variance of
PBSID (computed using the formulas of [6] and estimated
from the simulation) is indistinguishable from the Cramér
Rao lower bound also for colored inputs when the system is
ARX.

In the colored input case results are fundamentally differ-
ent: CCA behaves significantly worse than PEM and PBSID.
We also report the asymptotic variance computed using the
formulas which can be found in [6], [7] and the Cramér Rao
Lower Bound (CRLB).

VI. CONCLUSION

In this paper we have shown that the PBSID algorithm
introduced in [13], which may be seen as a “geometrical”
version of the algorithm in [22], is asymptotically equivalent
to CCA when measured inputs are white or absent. Our
analysis is supported by both the simulation results and the
asymptotic variance formulas computed in [6], [7].
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Fig. 1. Asymptotic Variance (Monte Carlo estimate) vs. normalized frequency(ω ∈ [0, π]) Solid with triangles(4) PEM, dashed-dotted with stars(∗):
CCA, dotted with crosses “predictor-based” algorithm (PBSID), dashed with circles(o): Jansson’s algortihm, dotted: asymptotic variance for PBSID, solid:
Craḿer Rao lower bound. Left: EXAMPLE 1 (ARX of order 1), Right: EXAMPLE 2 (ARMAX of order 1).

APPENDIX: PROOFS

Proof of Lemma 4.2.First let us note that

Ê‖U[t,T ]

[
Yt+h | Z[t0,t)

]
=

= Ê‖U[t,T ]

[
Ê

[
Yt+h | Z[t0,t+h), U[t+h,T ]

] | Z[t0,t)

]

To simplify notation letP := Z[t0,t+h) (past) andF :=
U[t+h,T ] (future). Under the assumption thatu(t) is white
(or absent of course) the rows ofU[t+h,T ] are asymptotically
orthogonal to the rows ofZ[t0,t+h) and also to the rows of
Yt+h; therefore, from the uniform convergence of sample
covariances (see for instance [19][Theorem 5.3.2]), it follows
that ‖Σ̂fp‖ := Yt+hP>

N and‖Σ̂yp‖ := FP>
N satisfy:

‖Σ̂fp‖ = O

(
(t− t0)

√
log(log N)

N

)

‖Σ̂yf‖ = O

(
(t− t0)

√
log(log N)

N

)

which implies

‖Σ̂fp‖‖Σ̂fp‖ = o(1/
√

N)
‖Σ̂yf‖‖Σ̂fp‖ = o(1/

√
N)

(A.1)

Recall that

Ê‖F [Yt+h | P ] := Σ̂yp|f Σ̂−1
pp|fP

= (Σ̂yp − Σ̂yf Σ̂−1
ff Σ̂fp)·

·(Σ̂pp − Σ̂pf Σ̂−1
ff Σ̂fp)−1P

which using (A.1) becomes, for the purpose of asymptotic
analysis

Ê‖F [Yt+h | P ] ·=Σ̂ypΣ̂−1
ppP (A.2)

Similarly one can show that

Ê‖P [Yt+h | F ] ·=(Σ̂yf − Σ̂ypΣ̂−1
ppΣ̂pf )Σ̂−1

ff F (A.3)



Using (A.2) and (A.3) we obtain

Ê
[
Yt+h | Z[t0,t+h), U[t+h,T ]

] ·= Ê
[
Yt+h | Z[t0,t+h)

]
+

+Θ̂U[t+h,T ]

for a suitable matrixΘ̂ which follows from (A.3). Next,
observe that̂E

[
Yt+h | Z[t0,t+h)

]
can be written in the form

Ê
[
Yt+h | Z[t0,t+h)

]
= Ŷ p

t+h +
h∑

i=1

Φ̂iYt+h−i + Ψ̂iUt+h−i

(A.4)
for suitable matrix coefficientŝΨi, Φ̂i. Taking now the
oblique projectionÊ‖U[t,T ]

[· | Z[t0,t)

]
of both sides of (A.4)

we obtain:

Ŷt+h = Ê‖U[t,T ]

[
Yt+h | Z[t0,t)

]
·= Ê‖U[t,T ]

[
Ê

[
Yt+h | Z[t0,t+h)

] | Z[t0,t)

]

= Ŷ p
t+h +

∑h
i=1 Φ̂iŶt+h−i

(A.5)
where Ê‖U[t,T ]

[
Θ̂U[t+h,T ] | Z[t0,t)

]
= 0 has been used.

Once again, the sample values ofΦ̂i can be substituted10

with their (a.s.) limit Φi without changing the asymptotic
properties, i.e.

Ŷt+h
·=Ŷ p

t+h +
h∑

i=1

ΦiŶt+h−i (A.6)

The only step left is to prove thatΦi = CĀi−1K. In order
to do so, we look at the regression problem with infinite
data and recall that convergence holds under Assumption
2.1. Writing the output in predictor form

y(t + h) = CĀh−1x(t) +
∑h

i=1 CĀi−1Ky(t + h− i)+
+

∑h
i=1 CĀi−1Bu(t + h− i) + e(t + h)

and projecting onto11 Z−t we obtain

E
[
y(t + h) | Z−t

]
= CĀh−1x(t)+

+
∑h

i=1 CĀi−1Ky(t + h− i)+
+

∑h
i=1 CĀi−1Bu(t + h− i)

= ŷp(t + h) +
∑h

i=1 Φiy(t + h− i)+
+

∑h
i=1 Ψiu(t + h− i)

Note that from (III.7) CĀh−1x(t) = ŷp(t + h);
using Assumption II.5 the projection admits a unique
representation as a function ofy(s), u(s) and therefore, in
particular,Φi = CĀi−1K. ¤
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