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Abstract—There is experimental evidence that a recently which, to some extent, are able to deal with feedback. The
proposed subspace algorithm based on predictor identification recent work [13] studies the statistical consistency of these
has a behavior which is very close to prediction error methods o algorithms. In [13] also a “geometrical” version of the
in certain simple examples; this observation raises a question . ’ .
concerning its optimality. algorithm _pro_posgd by Jan_sson [2.2] was introduced and

It is known that time series identification using the Canonical ~ called “whitening-filter” algorithm. This procedure forms the
Correlation Analysis (CCA) approach is asymptotically effi-  basis of our analysis and will be referred to as the “predictor-
cient. Asymptotic optimality of CCA has also been proved when  pased subspace identification” (“PBSID” for short) algorithm

measured inputs are white. In this paper we study the relation ;
between the standard CCA approach and the recently proposed in this pf"‘per' W‘? refer _the reader to the paper [14] for an
explanation of this terminology.

subspace procedure based on predictor identification (PBSID X . . .
from now on). Experimental evidence shows that the behavior of this

In this paper we work under the assumption that there is no  algorithm cannot be distinguished to any practical purpose
feedback; it is shown that CCA and PBSID are asymptotically from PEM in a number of 5imp|e examp|e3, see the simu-
equivalent precisely in the situations when CCA is optimal. lations reported in [22], [13]. Using some recently derived

The equivalence holds only asymptotically in the number of - .
data and in the limit as the past horizon goes to infinity. formulas (see [6], [7]) for the asymptotic variance of PBSID

Using some recent results on the asymptotic variance we One can verify that it is efficient in a number of examples
report counter-examples showing that PBSID is not efficiency when measured inputs are white. This observation raises

in general when measured inputs are not white. the question:is PBSID optimal and, if so, under which

e
I. INTRODUCTION conditions?

A certai ber of sub laorithms h b d IWe believe therefore that the relation of this procedure
certain number of subspace algorithms nave been AeVegy, oaqgjcal approaches is worth studying. To the best of
oped during the last two decades. For time series identifica-

. . Bur knowledge this relation has not been investigated yet.
tion the algorithm developed by Van Overschee and De Moor In this paper we work under the assumption that

[27] is known to provide asymptoticafiefficient estimators feedback is presenThe main contribution is to show that

[2]. Sometimes Fh's algorithm goes under the name of CC'éBSID is asymptotically equivalent to CCA in the time
(or CVA) to remind that the state construction is performe%

ing C ical C lation Analvsis. In th eries case and also when measured inputs are white. The
using anonical Lorrefation Analysis. in the presence Qi,,q,, why equivalence does not hold with arbitrary input
measured inputs the situation is different. The most widel

ignals will be made clear later on. Suffices it to say that
known procedures go under the acronyms NASID [28], CCS andard procedures use “unnecessary” future input data in

[23], [24] and MOESP [30]. Recently several researchert?]e regression used to construct the basis for the state space;

have studied the asymptotic statistical properties of thes o “ - "
algorithms [1], [21], [4], [5], [3], [9], [11] and compared, 3§ the white input case these “unnecessary input data” are

ik toticall lated with ti t and output and
to some extent, existing procedures [5], [3], [10]. Also(asympmca y) uncorrelated with past input and output an

optimality of the CCA method when measured inputs arE:EZE?tti eosutput and therefore do not influence the statistical
white has been established in [5]. The situation is not clear ’
when inputs are not white. The interested reader is referres
to the paper [5].

It is our opinion, as has already been stressed in [14], th
some new ideas have been introduced into the field by trlg(

study of subspace algorithms in the presence of feedbackt

This is, we believe, an important step in understanding
redictor based” subspace identification; our result implies
that also the PBSID algorithm is asymptotically optimal for

e series identification and for identification with white
ogenous inputs. We stress that our proof is not based on
he asymptotic variance expressions but rather on the analysis

It is well-known in fact that standard procedures such a N :
MOESP, N4SID, CCA, do not work when data are collecte ;;23 state estimation step on which PBSID and CCA are

in closed loop. Very recently two subspace procedures have . . T
. . : The question regarding optimality in more general cases
been introduced by Qin and Ljung [26], and Jansson [Z%Jemains open of course; simulation results and computations

This work has been supported by MIUR based on the asymptotic variance expressions (see Section
4 meisandfo Chitljso is (\jNithP dthe \D/ipafgm%nto diﬁ//ingggqgfliaV) suggest that PBSID is in general not efficient for colored
ell'lInformazione, Universé di Padova Via Gradenigo , : : : P ;
Padova, Italychiuso@dei.unipd.it input. This with a notable exception: we have observed in a

1Short for “predictor-based subspace identification”. number of examples with ARX systems that the asymptotic

2Both in the number of data and “past” and “future” horizons. variance is indistinguishable from the CramRao lower



bound also for colored inputs and also when feedback &ndG(z) = C(sI — A)~'K + I, starting from input-output
presenf Whether or not this depends on the particuladata{y,,us}, s € [to, T+ N], generated by the system (11.1).
example or can be generalized will be subject of futur@his setup also encompasses time series identification (i.e.
research. no measured inputs) provided one Iéts= 0 in (11.1).

The structure of the paper is as follows; in Section Il In this paper we shall have to deal with random fluc-
we introduce some basic notation. The details of the twtuations due to finite sample length (e.g. approximating
algorithms analyzed are reported in section Il while Sectioexpectations with finite time averages, etc.). Our concern is to
IV contains the statement of the main result. Section $how the link between CCA and “predictor based” algorithm
contains some simulation results and in Section VI we reposasymptotically as the number of dada goes to infinity.
some conclusions and discussion on future work. Part of the We shall use the standard notation of boldface (lowercase)
proof is deferred to the appendix. letters to denote random variables (or semi-infinite tails).
Lowercase letters denote sample values of a certain random
variable. For example we shall denote wjtty) the random

Let {y(¢)}, {u(t)} be jointly (weakly) stationary second- vector denoting the output or equivalently the semi-infinite
order ergodic stochastic processes of dimengioand m  tgj| [ Yes1s - Yesk -..] Wherey, is the sample value of
respectively, which are representable as the output and ingut;). It can be shown (see [25], [12]) that the Hilbert spaces
signals of a linear stochastic system in innovation form  of second order stationary random variables and the Hilbert
Ax(t) + Bu(t) + Ke(t) space of semi—infiljite tails contai.ning sample v_alues qf a
Cx(t) + Du(t) + e(t) t = to. (second order) stationary stochastic process are isometrically

(11.1)  isomorphic and therefore random variables and semi-infinite
we assume that there i® feedbackrom {y(¢)} to {u(t)} tails can be regarded as being the same object. For this reason
[18], [16]. Without loss of generality we shall assume that th&ve shall use the same symbol without risk of confusion.
dimensionn of the state vectoxk(t) is as small as possible, We shall instead use capitals to denote the tail of length
i.e. the representation (11.1) is minimal. For simplicity weN. For instanceY; := [y; Y11, ... yeyn-1), U =
assume thaD = 0, i.e. there is no direct feedthroufrom [yt yes1, --- yeyn—1] @andZ, := [Y,7 U,']7. These are the
u to y. For future reference we definé := A — KC and block rows of the usuatlata Hankel matricesvhich appear
let p := A\nae(A) be an eigenvalue of maximum modulus ofin subspace identification.

A; we shall assume thap| is strictly less tharl. Remind that, in order to deal with realistic algorithms

The white noise process the innovation ofy given the which can only regress on a finite amount of data, in
joint past ofy, u, is defined as the one step ahead predictiopubspace identification one usually keefpsite past and
error of y(t) given the joint (strict) past ofi andy up to future horizons This setting we describe as using data from
time ¢. a finite observation intervalThe analysis reported in this

The symboll shall denote the identity matrix (of suitable paper requires that botN, the length of the finite taifsand
dimension), AT shall denote the transpose of the matrixhe past horizort —t, © go to infinity. We remind the reader
A. The equality sign= will have to be understood, when thatt—t, has to go to infinity at a certain rate depending on
random variables are involved, abnost sureequality while the numberN of data available. Details can be found, for
= shall denote equality in probability up td1/v/N) terms, instance, in [5] where the following assumption is made:
which we shall callasymptotic equivalencdn fact, from
standard results in asymptotic analysis (see for instance [1%
terms which arex(1/+/N) can be neglected when studying
the asymptotic statistical pr'operties. We shall also use the t—tg > logN~—4/2 1<d<oo
same symbol when the difference in the equated terms
produces nonsingular change of basis (up to o(1/v/N)
and satisfyinglimy_... Tn = I) in the estimated state Under this assumption the effect of terms due to mishan-
sequences. In fact also these differences may be discard#itg of the initial condition at timet, are o(1/v/N) and
as far as estimation of system invariants are concerned. Rberefore can be neglected. Moreover, (I1.2) ensures that,
instance, ifx; and x, are two candidate state var[ables,when regressing onto past data and taking the limVapes
we shall writex;=x, if there exists a non singulafy, to infinity, the computation of sample covariance matrices of
with limy ., Ty = I, so thatx; — Tyxy = 0(1/\/]V) in  increasing size (witht — ¢y) does not pose any complication
probability. in the sense that their limit is well defined and equal to the

Our aim is to identify the system parametérs B, C, K), population counterpart (see the discussion after Lemma 4 in
or equivalently the transfer functiod(z) = C(z1—-A)~'B  [5]).

II. BASIC NOTATION AND PRELIMINARIES

—
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Assumption 2.1The past horizont — t; goes to infinity
th N while satisfying:

(1.2)
t —to =0 (log(N)%) a < 0o

SWe remind that something similaioes nothappen with CCA. 5This is the parametef in the notation of Van Overschee and De Moor
4This assumption can be removed in our situation but is useful when thef28] i.e. the number of columns in the Hankel data matrices used in subspace
is feedback, see [18], [16], [13]. Since the “predictor based” algorithm iddentification.
designed to work without assumptions on the feedback structure we prefer®The number of block rows in the Hankel data matrix containing the past
to keepD = 0 also here. data.



Forty <t < T we define the Hilbert spacty,  of Under our ergodic assumptiofim Sab Z Yab.
random (zero mean finite variance) variables Similarly, given a third @ggﬁence (sayC; =

[ct)Coq1s 0 Con—1])s Zable 1S defined as X =
Sab — YacYod Sep. Orthogonal and oblique projections on
the bar denotes closure in mean square, i.e. in the metspaces of finite tails will be denoted with the symhj
defined by the inner produgts, n) := E{¢n} whereE{-} e.g. E[-\U[to,t)] will be the orthogonal projection on the
denote mathematical expectation. Similarly we defipg ;).  space generated by the rowsf, , and EHU[t,T] 1 Z 1t )
These are th@ast spacest timet of the processes and  will be the oblique projection along the space generated by
y. Similarly, letUy, 7y, Y, r) be the future input and output the rows of future inputéj, 7y onto the space generated by
spaces up to timé'. We shall usey := T —t. the rows of the joint pasty, ;) [17]. As above, the oblique
We define thejoint future, Zj; 1) := Uy, 71 V Y, 1) @nd  projection can be computed using the formula:
joint pastZy, +) = Uy, 1 V Y, the v denoting closed - e Y
vector sum.[ (IJBy)conve[nOtio)n the[ E)a)st spaces do not include the Byp, [AdC] = LaclbUe|nCt- (I1.4)
present. When, = —oo we shall use the shorthants, Y, When projecting onto the space generated by the rows of
for Ui_oo,), Yj—sc,r), @nd Z; = Uy V Y, . Subspaces two (or more) matrices, sayp; and C; we shall use the
spanned by random vectors at just one time instant (e.gotationZ [-| B, C]
Uy, +), etc) are simply denotetl;, etc. while for the spaces Al through this paper we shall assume that the joint
generated byu andy whent goes from—oo to +0co we process is “sufficiently rich”, in the sense thgt, ) admits
shall use the symboll, Y, respectively. the direct sum decomposition
With a slight abuse pf notation, given a subspgbeg Zito. 71 = Zito. 1) + Zpt. 71, to<t<T (I1.5)
UVY, we shall denote witlE[- | A] the orthogonal projection o o '
onto A, which coincides with conditional expectation in thethe + sign denoting direct sum of subspaces. The symbol
Gaussian case. Given two non-intersecting subspAces v_v|Il be resgrved fqr(_)rthogonaldlrect sum. Various condi- _
UVY, BCUVY ANB = {0}, Eyp[ | A] shall denote tions ensuring sufficient richness are known. For exa_m_pl_e, it
the oblique projection ontal alongB (see [17], [12]). is well-known that for a fu!l—_rank pgrely non deterministic
We adopt the notatiorE., = F [abT] to denote the (P.n.d.) proces to be sufficiently rich it is necessary and
covariance matrix between the zero mean random vectotdfficient that the determinant of the spectral density matrix
a and b. In the finite dimensional case the orthogonaf®- Should have no zeros on the unit circle [20].
projection of the random vecter onto the space spanned by V\/_hgnever necessary we shall assume that (11.5) holds also
the vector€ := span{c} will be given by the usual formula for finite sequences, i.e. tha;, r) is of full row rank.

Upo,sy = Span{ug(s); k=1,...,p, to <s<t}

(with Yee) For future reference we also define the extended observ-
° E[al€] = SaeSole. ability matrices
ccC } C C
Defining the projection errora := a — FElalc|] andb := CA CA
b — E[blc], the symbolX,;, . will denote projection error _ 1
[blc] y b| proj r, .= | CA? L D= | OA (11.6)

covariance (conditional covariance in the Gaussian case)
Sable = Szp = Sab — YacYee Neb. If we denoteB := : E
span{b}, € := span{c}, and assume thaB N € = {0}, cAM! C AR

the oblique projectiort); [a|C] can be computed using the and the Toeplitz matrices containing the Markov parameters
formula: ) of the “stochastic” part:
Eug [a|€'] = Eac‘bEc_c‘bc. (”3) T 0 0

For column vectors formed by stacking past and/or B CK I L7
future random variables (or semi-infinite Hankel matri- k= : : ETR (I1.7)
ces) we shall use the following notationy , := CAF—2K CAF3K I

=

[ y'(®) y'(t+1) ... y'(s) ] . We shall also use I1l. STATE SPACE CONSTRUCTION

the shorthandi™ := u 7). ) . e
Similarly the (finite) Hankel data matrices will be denoted I_t is well known [27], [28], [25], [12] that identification
o T T T 4T using subspace methods can be seen as a two step procedure
asYq:=1[Y' Y. .. Y]]

Sample covariances of finite sequences will be denote%lfougws basist, for th . itabl
with the same symbol used for the corresponding ran- ) Construct a basisY, for the state space via suitable

dom variables with a “hat’ on top. For example, given projection operations on data sequences (Hankel data

i, trices)
finite sequencesd; := [at,at41..,at4n-1] @nd By = ma )
[be, be 1., besn—1] we shall define 2) Given (coherent) bases for the state space at time

(X;) andt + 1 (X;41) solve

~ 1 % ~ % 2
Yab = at+z‘th+z'- { Xep1 = AXy + BU + KE,

. .1
th >~ CXt +Et ( )



in the least squares sense We quote now a result first appeared in [5] which shows

Different subspace algorithms have different implementdhat the CCA weightiV = E;/nyr‘qu can be substituted
tions of the first step while the second remains the sanwith [H, (I @ A)H,]'/? without changing the asymptotic
for virtually al algorithmg. For this reason we compare properties:
algorithms on the basis of step 1). We shall identify proce- Lemma 3.1:(Bauer Ljung[5]) Assume the parameters are
dures which are (asymptotically) equivalent, modulo changestimated following steps 1) and 2) above and the state
of basis, as the first step is concerned. is constructed according to (l1l.5). Then any choidé =
[H,(I ® A)H,] +T,5T]]"/2 with © = ¥ > 0, provides

Ref“a“? lll.1 We remind the- re‘?‘der that fap fmm_a the the same asymptotic accuracy of the estimates of any system
estimation of the Kalman gaifi involves the solution of invariant

a Rigcati 'Equ'ation. See for 'instan'ce 271, [28]’ [25]. The This fact will be useful later on to study the relation
S|tuat|do_n '? (Xﬁerent t_herez 15|nce0 is let going to _ZO between CCA and predictor-based subspace identification.
according fo Assumption <. Remark 111.3 With some abuse of notation we shall denote

In this Section we shall review the state construction stewith X4 any state sequence resulting from a choicélof
for the CCA algorithm [23], [29], [5] and for the PBSID of the formW = [H, (I @ A)H,] +T',SI']]'/2. Lemma 3.1

algorithm [22], [13]. ensures that these state sequences are asymptotically equiv-
_ alent as far as estimation of system invariants is concerned,
A. CCA Algorithm but may differ for a nonsingular change of basis of course.

The basic object which allows to construct a basis for the
state space is the “oblique predictor”
) ) B. PBSID algorithm
Yierp = By Yiery | Zion)] i ing thi i
' I X“»Tl : 0 (1n.2) The construction of the state space using this algorithm
vt is slightly more complicated and involves several oblique
The approximate equality has to be understood in the sengejections. First of all one computes the oblique projecflons
that, asymptotically inV

12

5 - Y, = E Yion | Z
Yier) = B [Yier | 20] = Tux(t) (1.3) e ngﬁff}t[ | Zito] (111.6)
h=0,1,..,v

holds. The matrixff[t’T] has in general full row rank.
The reduction to rank, the system order, is implementeda|so here the last approximate equality has to be understood

via the weighted singular value decomposition in the sense that, asymptotically i,
W_lff[t,T] = UsSV'’ 5 Yt +h) = Ejz,,.., [y(t+h) |2, ] = CAM'x(t)
_ 7 n 0 T T h:(),l,..,l/
(I1.4)  holds. Then one stacks all the predictors

The CCA algorithm corresponds to the chdicd :=

P

El/fyﬂlﬁ. An estimate of the observability matrix is ob- };’;
tained discarding the “less significant” singular values (i.e. yP . Yo | T, X,
pretendingsS,, ~ 0) from (1] : oo

f, = WU, s/ Yi

. . From the Singular Value Decomposition
and consequently a basis for the state space given by:

19 ~ D, 0 -
Wy ' Viz = PDQ" = [PuPs] [ 0 Dn } [Qi @]
(111.8)
Remark 111.2 We remind that all weighting matrices are in where W, is a weighting matrix which will be chosen
practice data dependent. However, for the purpose of asymyppropriately, an estimate of the observability mafrix is
totic analysis, data dependent weights can be substituted wishtained discarding the “less significant” singular values (i.e.
their (a.s.) limit. Therefore, to streamline notation, we prefepretendingD,, ~ 0) from

to work directly with the population version of all weights. o
0 r, = W,P,D}/?

XP4 = 52U WY, (111.5)

“In this paper we shall not be concerned with algorithms based on thaend Consequently a basis for the state space

so-called “shift invariance” method. -PBSID ._ n—1/2pTy/—1yPp
8The reader may argue that this procedure differs from the original CCA Xy =D, "P, WP Y[tyT] (11.9)

by the choice of a “right” weight. We remind that this “right weight” has

no influence on the asymptotic accuracy of the estimates using the so calledThe superscript reminds that the quantity has to do with the “predictor-

“state approach”, i.e. implementing step 2) above. See for instance [5], [9)ased” algorithm.



IV. MAIN RESULT the matrices of which one computes SVD are asymptotically
Our purpose in this section is to study the link betweefquivalent for the two algorithms. As a consequence also
the state constructions (IlI.5) and (III.9). We first state thdhe estimated state sequenceS“4(t) and X "#51P(t) are
main result of the paper and then proceed with a derivatigdsymptotically equivalent, which concludes the proof.
of the result. 0
Theorem 4.1:Let A denote the innovation noise covari-
ance. Under the conditions stated in Assumption 2.1, assum- V. SIMULATION RESULTS
ing that inputs are white or absent and providEglis chosen The simulation setup is as follows: we consider two

according tolV, = I®A'/2, the state constructions in (Ill.5) systems to be identified (in innovation form); the first is a
and (111.9) yield asymptotically the same accuracy as far afirst order ARX system

estimation of any system invariant is concerned i.e.: A =05 Ci=1 Bi=1 Cy=1 Ki=05 Dy=0
XPBSID_ xCCA while the second is a first order ARMAX model
t Mt

Remark V.4 Using state sequences which cannot be dis- 42 =05 C2=1 Bx=1 (C2=1 Ko=1 D>=0

tinguished up too(1/V/N) terms guarantees that the es- The input is either unit variance white noise or unit

timated system matrices obtained from step 2) above aRdriance white noise passed through the filter with state space
consequently any system invariant share the same asymptgtigjization:

properties.
The proof of this theorem relies on an intermediate result A, = [ 0 1 ] B, = [ 13 }
. . ) —-0.9 0.5 3
which we state in the form of a lemma:
Lemma 4.2:If u(t) is absent or white the oblique predic- C.=[1 0] D,=1
tor Yiyn := Eyuy, o, [Yern | Zigo )] satisfies: We report results concerning the asymptotic variance
. . ho R (sample variance estimated ovéf0 Monte Carlo runs
Vin=Y7, + Y CAT'KY;pi (IV.1)  multiplied by the numberN = 1000 of data point used
i=1 in each experiment) of the deterministic transfer functions
which can be written in compact form as Fi(z) = Ci(2I — A;))7'B;, i = 1,2. The past horizon has
been chosen to bg and 10 respectively for Example 1 and
I 0 0 Example 2. As a reviewer mentioned, this might be a critical
. _CK I .0 point. Let us just mention that the length of the past horizon
Y[f’T]: : : L (% for the equivalence to hold in practice depends;x_)nThe
K K : closerp to 1, the largert — g needs to be. Investigations
—CA"?K —-CA"7°K ... I v2) concerning such choice are postponed to future publications

. . . ) for reasons of space.
The block Toeplitz matrix which appears in formula (IV.2) £ ture horizon has been chosen equas fa both exam-
is the inverse off{, defined above, i.e.

ples.
Vi =H, Y. (IV.3) Note that for the white input case both CCA and the
This lemma shows that? . is asymptotically equivalent to predictor based algorithm are indistinguishable from PEM
[t.T] as predicted by the theory. The algorithm by Jansson [22] is

a weighted version oF; ) indistinguishable from PBSID. The asymptotic variance of

P fProfo_f_:h The prgolf can be found in the Appendix ® PBSID (computed using the formulas of [6] and estimated
rootot Theorem ... . . ._from the simulation) is indistinguishable from the Cram
We recall from (I11.8) that in the predictor-based a[gorlthmRaO lower bound also for colored inputs when the system is

one takes SVD oWZjlY[fT while, from (111.4), W'Y}, 1 ARX

IS Il\jlsed 'rr: thehC%ACZIgcl)nt ”;] d he choi In the colored input case results are fundamentally differ-

ote that, the algorithm corresponds to the choicey . cca pehaves significantly worse than PEM and PBSID.

W = El/f P— (Fyzxxllﬁrj + H,(I® A)HI)W We also report the asymptotic variance computed using the
vty lu . . . formulas which can be found in [6], [7] and the CranRRao

whereA is the variance of the innovation. Lower Bound (CRLB).

However, by letting” = 0 in Lemma 3.1,W = (H,(I ®
A)H,[)'/? provides the same asymptotic behavior. VI. CONCLUSION

If we now pre-multiply both sides of (IV.3) in Lemma 4.2 In this paper we have shown that the PBSID algorithm
by Wp_l/2 = (I ® A)~/? we obtain that introduced in [13], which may be seen as a “geometrical”

Wp_lmyﬁ,ﬂi([ 2 A)_l/QH,,_lY[t,T]. (IV.4) version of the algorithm in [22], is asymptotically equivalent

to CCA when measured inputs are white or absent. Our
As described in Section Il the right hand side is used imnalysis is supported by both the simulation results and the
CCA while the left hand side in PBSID. This means thaasymptotic variance formulas computed in [6], [7].



Example 1, White Input Example 2, White Input

Asymptotic Variance (Monte Carlo Estimate) Asymptotic Variance (Monte Carlo Estimate)
10 T T T 10 T T T

10 L L L L L L 10 L L L L L L
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Example 1, Colored Input Example 2, Colored Input
, Asymptotic Variance (Monte Carlo Estimate) 5 Asymptotic Variance (Monte Carlo Estimate)
10 T T T 10 T T T

10?2 I I I I I I 10?2 I I I I I I
0 05 1 15 2 25 3 0 05 1 15 2 25 3

Fig. 1. Asymptotic Variance (Monte Carlo estimate) vs. normalized frequénay [0, 7]) Solid with triangles(A) PEM, dashed-dotted with sta¢s):
CCA, dotted with crosses “predictor-based” algorithm (PBSID), dashed with cifglegansson’s algortihm, dotted: asymptotic variance for PBSID, solid:
Craner Rao lower bound. Left: EXAMPLE 1ARX of order }, Right: EXAMPLE 2 ARMAX of order L

APPENDIX: PROOFS which implies
Proof of Lemma 4.2First let us note that

[SeolllSepll = o(1/VN)

. ~epllll~ (A1)
Evgry [Yean | Zion)] = [ Syell[Sep]l = o(1/V/N)
= Eju, p [E Yern | Zito,t4m)s U] | Z[tn,t)} Recall that
To simplify notation letP := Zj; ;) (past) andF := ErnlY, Pl = .51 p
Upryn,7) (future). Under the assumption thatt) is white 17 Yot | P] yPIfZpplf”
(or absent of course) the rows of; ., ) are asymptotically - (E)’P B EAyszff_IEfP)'_ .
orthogonal to the rows oy, ;1) and also to the rows of (Ypp — Tpelg Ygp) P

Yiin; therefore, from the uniform convergence of sample | . : .
covariances (see for instance [19][Theorem 5.3.2]), it follow\évhICh using (A.1) becomes, for the purpose of asymptotic

N N analysis
that [|Sep | = Y222 and ||, = £2" satisfy: y ) e
By Wien | P]=SypS5LP (A.2)

- o B log(log N)
el = O { (£ to) N Similarly one can show that

2 -0 t—t log(log N) R . R PN .
1yl ( O)\/ N E,|P[Yt+h\F]:(zyf—zypzp;zpf)zﬂlF (A.3)



Using (A.2) and (A.3) we obtain [3]
E [Y;H-h | Z[to,t+h)aU[t+h,T]] = E[Kt-&-h | Z[to,tJrh)] + (4]
+OU[14n,1)

. 5
for a suitable matrix© which follows from (A.3). Next, Bl
observe that [V, | Zjt, +11)| can be written in the form -

h
E[Yien | Ziggim) =Y, + Z O Yyin—i + ViUpins 7]
=1
o (A.4)
for suitable matrix coefficientsl;, ®;. Taking now the (g
oblique projectiont), ., [- | Zp,.,] of both sides of (A.4)
we obtain:
R . [9]
Yien = EHU[t,T] [Yt-‘rh | Z[tmt)}
= B, [E [Yern | Zisg,04m)] | Z[to,t)} (10]
= Y, + Zf:l D;Yiin—i
(A5) [11]
where Ejv, .z {@U[H,LT] \Z[tg’t)} = 0 has been used. [12]
Once again, the sample values ®f can be substitutéf] [13]
with their (a.s.) limit ®;, without changing the asymptotic
properties, i.e. [14]
A hoo [15]
Yipn=Y/, + Z‘I%YHh—i (A.6) (16}
=1

The only step left is to prove that; = CA* "' K. In order

. ith infinitd2”}
to do so, we look at the regression problem with infinit
data and recall that convergence holds under Assumptiors)
2.1. Writing the output in predictor form

[19]
y(t+h) = CAM'x(t)+ " CA Ky(t+h —i)+ 201
+3 0 CABu(t + h—i) +e(t + h)
[21]
and projecting ontd 2, we obtain
_ [22]
Ely(t+h)|2;] = CAx(t)+ 23

+S  CATIKy(t+ h— i)+
+3 " CAT Bu(t + b —i)
P(t+h) + 0, Ry (t+ h— i)+ P4
+ 3 Wt +h—i)

Note that from (l1.7) C A" 1x(t) yP(t + h);
using Assumption 1.5 the projection admits a uniqu 26
representation as a function gfs), u(s) and therefore, in
particular,®; = CA* ' K. O

[25]

]
[27]
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